
Teaching Resource

ACTIVITY: Make me a sandwich

This off-line activity is typically used as an introduction to robotics or
coding, but computational thinking can be applied to problem-solving
across all disciplines, irrespective of age. It is not a diffi cult concept to
grasp, and as this activity will show, lots of fun to learn!

ACTIVITY OVERVIEW

Teaching Resource

ACTIVITY: Make me a sandwich

This off-line activity is typically used as an introduction to robotics or
coding, but computational thinking can be applied to problem-solving
across all disciplines, irrespective of age. It is not a diffi cult concept to
grasp, and as this activity will show, lots of fun to learn!

ACTIVITY OVERVIEW

2

Foundation – Year 2
• Follow, describe and represent a sequence of steps and

decisions (algorithms) needed to solve simple problems
(VCDTCD017)

Year 3 – 4
• Defi ne simple problems, and describe and follow a sequence

of steps and decisions involving branching and user input
(algorithms) needed to solve them (VCDTCD023)

Year 5 - 6
• Defi ne problems in terms of data and functional requirements,

drawing on previously solved problems to identify similarities
(VCDTCD030)

• Design a user interface for a digital system, generating and
considering alternative design ideas (VCDTCD031)

• Design, modify and follow simple algorithms represented
diagrammatically and in English, involving sequences of steps,
branching, and iteration (VCDTCD032)

• Develop digital solutions as simple visual programs
(VCDTCD033)

SYNOPSIS
There is no denying that, in today’s innovation-driven economy,
skills beyond literacy and numeracy are required for students to
thrive. Problem-solving is one of those skills and students who can
approach problem-solving positively, creatively, and logically, are
more likely to be the problem-solvers, innovators, and creators of this
digital age.

Introducing computational thinking to the young is more than
laying a strong foundation for programming software. Its relevance
in developing thinking and reasoning skills to solve day-to-day
problems is what makes this mindset an essential part of every
child’s education. When writing a narrative, computational thinking
takes the form of a writing plan or graphic organiser, where the story
is fi rst broken down into different elements. At home, it could come
across as deciding what to cook, based on what is in the pantry.
When programming computers, computational thinking results in
coding.

This off-line activity is typically used as an introduction to robotics
or coding, but computational thinking can be applied to problem-
solving across all disciplines, irrespective of age. It is not a diffi cult
concept to grasp, and as this activity will show, lots of fun to learn!

ACTIVITY, MATERIALS AND INSTRUCTIONS

Activity
Students are introduced to elements of computational thinking through
this fun activity, which can be done in groups with older students, or as a
class activity for younger children.

Before embarking on this activity, survey the class for any allergies to the
ingredients and make the necessary changes, (e.g. swap Vegemite for
hundreds-and-thousands, butter for margarine, etc.).

Materials for 30 students
•	 A loaf of bread

•	 6 servings of Vegemite

•	 6 servings of a soft spread, (e.g. butter or butter alternatives)

•	 6 x plastic knives

•	 6 x plates

•	 Paper towels

•	 Enough plates or containers to dish out Vegemite and the spread

•	 6 printouts of ‘instructions’ that has been cut out

•	 Sufficient pen and paper

•	 Scissors

•	 Optional: blindfold, gloves, glue

Instructions
1.	 Students work in groups of four or five to prepare a Vegemite

sandwich.

Assign roles to students - one student is the sandwich-producing
robot, while the others are programmers who will develop and give
instructions for the process.

Variation: For younger students, this could become a class activity

where the teacher is the robot. Students still work in groups to create
the instructions and the robot-teacher executes the steps from
each group.

2.	 a) With the exception of the robot-students, the rest of the
programmer-students come up with a sequence of steps for the
robot to follow.

From the pieces of cut out instructions, students select and
sequence an order that makes sense to them. Students should
identify the more specific instruction, ignore the irrelevant ones, and
find the shortest solution.
Variation: There is a choice of instructions for younger and older
students

b) Meanwhile, the robot-students gather the necessary materials for
the activity and place them on their sandwich-making station. They
also wash their hands with soap.

3.	 Make the sandwich.

Give students about 10 minutes for this task.

Rules/Conditions:

a) Seat the programmer-students a distance away from the robot-
student to give the instructions. Programmers cannot be in physical
contact with the robot.

b) We assume that the robot already possesses the necessary
sensors, output devices, and programming to see the material, pick
up objects, scoop out spreads, and apply the spread.

c) The robot cannot speak and can only shake its head or shrug
its shoulders when it doesn’t understand the instructions. The robot
must only follow the instructions that are given to it; and can decide

4

HOW TO USE THIS ACTIVITY WITH YOUR STUDENTS
This activity introduces students to the idea of approaching a problem
systematically, and there are many simple ways to go about extending
student understanding of thinking and reasoning skills related to problem
solving from here.

Foundation - Year 2
 Introduce students to the idea of computational thinking in our everyday
tasks. What are some areas of our everyday lives where it is useful to be
systematic, (e.g. getting ready for school in the morning? Preparing a
meal?)

With robots and machines, these steps need to be spelt out explicitly so
that each task is done properly.

In the area of problem-solving, students are expected to learn how to
sequence events and actions, and to do this through providing instructions
to programmable devices such as robots. For this age group, use a
classroom set of robots that students are already familiar with, or use
the simplest programmable robots, such as Beebots, so that the focus
remains on the sequencing of events.

The activity could be as straightforward as making the robot navigate a
path out of the classroom. Other ideas include using the robots to play
naughts-and-crosses, or even using the robots in storytelling, (e.g. where
the robot is the Big Bad Wolf that visits the homes of the three little pigs
and spins in front of their door). Some school robot kits also come with
patterned fl oor plans that teachers can use to support mathematics
learning, by using fl oor plans with geometric shapes or numbers, or for
spelling lessons, by using fl oor plans with letters to spell a word.

whether the instructions are suffi cient to carry out the task.

For added challenge, blindfold the robot.

4. Assess the process and make modifi cations.

What are some problems that arose? What changes need to be
made to the instructions?

5. Repeat the sandwich-making process with the improved
instructions.

There should be marked improvement to the process because
of changes made to the instructions. But it also helps that the
sandwich-making robot possesses sophisticated artifi cial
intelligence to self-learn and improve each time!

6. The robot eats the sandwich!

7. Discuss the importance of being systematic in this activity, and
introduce how the concept of computational thinking can be
applied to this i.e.

• breaking down the problem into smaller parts (decomposition)

• fi nding similarities between steps (pattern recognitions)

• focusing on the important aspects, ignoring the irrelevant
details (abstraction)

• developing a step-by-step solution (Algorithm design)

Which component of this process did students fi nd most diffi culty?

5

Years 3/4
Use this activity to emphasise how there are many ways of solving the
same problem. As groups present their sandwich-making robot, one at a
time, other students can take notes of how their own instructions differ. For
programming robots and machines, however, it is the simplest working
program that is the best solution.

As an extension to this activity, ask students to write out instructions to
tie a shoelace or to eat a TimTam biscuit with milk. Students present their
solutions and vote on which set/s of instructions are their favourite, or most
plausible alternative.

Years 5/6
Students should be able to complete this activity quite quickly and easily,
so this could serve as a fun introduction to representing information, (e.g. a
series of instructions, repetitions within an instruction, or making a decision
between two instructions).

Students could represent their set of instructions (algorithms) for making
the Vegemite sandwich as fl owcharts or tree diagrams, or use words to
express their ideas. For variations, apply some conditions for students to
include:

• Using loops in a fl owchart, or a ‘REPEAT’ statement if using
words, or when they identify repetitive instructions

• There is an unfortunate allergy to Vegemite

Students present their fl owchart to their classmates for feedback.

Below is an example of a fl owchart made with Draw.io and then simply
copied and pasted to a Word document:

For more information on how to use fl owcharts:

• Using fl ow charts to design algorithms (education.vic.gov.au)

• Representing an algorithm: Flowcharts - Algorithms - KS3 Computer
Science Revision - BBC Bitesize

DISCUSSION SECTION AND KEY THEMES

KEY THEMES

Computational Thinking
The concepts of computational thinking first appeared – thanks to
computing pioneers - in the 1950s but only gained a foothold in the
computer science educational community in 2006. That was when a
professor of computer science proposed that computational thinking
was a fundamental skill for everyone - not just computer scientists. She
also argued for the importance of integrating these problem-solving skills
across other disciplines in school.

Computational thinking describes a structured approach towards
problem-solving and forms the framework of how programmers find
solutions. However, this mindset is also a powerful thinking and reasoning
tool for students to use in every aspect of their lives.

Computational thinking comprises four components:
1.	 Decomposition

This describes breaking down the problem into smaller, more
manageable parts to achieve the desired solution. Complex
problems can often be overwhelming, so breaking them into
separate components will make them easier to be understood and
solved.

In English, decomposition is the process when students plan a
narrative or persuasive piece, in parts, before they write the actual
story.

Whether using a more traditional plan or a graphic organiser
like a story arc, students consider different elements, such as the
introduction, the conflict, the climax, and the conclusion, separately,
before assembling these ideas to form the story.

2.	 Pattern recognition

Pattern recognition is the act of looking for similarities or patterns
in a problem, so that predictions and rules can be made to resolve
other similar problems more effectively. The predictions and
rules allow large quantities of data to be grouped (classified and
clustered), based on how they are similar to the types of data that
is already in the system - and then allows decisions to be made,
accordingly.

Pattern recognition forms the basis of facial recognition, iris
recognition, computer vision, speech recognition, fingerprint
identification, and seismic analysis. Teachers and students use
pattern recognition skills when sorting living things from non-living
things, classifying living things into kingdoms, identifying beats and
scales in music, applying mathematical rules to similar situations,
and even when identifying words that rhyme.

3.	 Abstraction

Abstraction is the process of focusing only on the important parts of
the problem - and ignoring irrelevant details - to solve it efficiently.
Once we have recognised patterns in problems, abstraction is used
to gather general characteristics, and then filter out the details that
we do not need.

Abstraction allows us to have a clearer idea or ‘model’ of the
problem. Having abstracted, we know that all birds have wings,
feathers and beaks.

The colour of the feathers and whether those feathers help the bird
fly are details that we can leave out. Abstraction also helps us not
to be overwhelmed by details. For instance, when learning to ride a
bicycle, we do it by only learning the necessary skills (e.g. balancing,

7

steering, braking, pedalling), without having to know the history of
cycling or the physics of motion. At school, teachers and students
use abstraction when summarising a story and identifying the main
ideas of a lesson.

4. Algorithms

An algorithm is set of step-by-step instructions, or rules, to solve
a problem. Each of these steps is simple and well-defi ned, and
ordered to work in a specifi c sequence. Algorithms are a starting
point for creating a computer program and are often presented
in a fl owchart. An algorithm computes the input according to the
instructions and produces the desired output. Like a recipe, an
algorithm takes the input (ingredients), applies the set of well-
defi ned instructions, and produces the output (the dish).

After an algorithm has been established, programmers express
these instructions by coding so that the computer knows what to do.

At school, algorithms can be used to improve understanding of
grammatical rules when students draw fl owcharts and tables to
show when specifi c rules apply. In science, students gain a better
understanding how to use the periodic table once they understand
the rules of how elements are sorted in the table. In art, students can
even follow an algorithm to draw a portrait.

QUESTIONS AND ANSWERS

Can machines program themselves to do things?
Yes – and if machines have the capability to do this, we say that they
possess artifi cial intelligence (AI). Programmers have developed software
which allow computers to collect data each time they carry out a task,
then analyse the data to perform the same task better the following time.
The result is machines that are capable of reasoning, learning, problem-
solving, and making quick decisions.

Prominent examples of AI include robots in manufacturing which ‘learn’ to
become more effi cient over time, robots in surgeries, and even chatbots
to help shoppers get a better customer service experience while shopping
online!

Is it diffi cult to code a program?
As with learning any skill, coding takes effort, time, and expertise to
master. There are several languages students can learn to code – some
easier than others, such as Scratch, Python, Java, etc. There are many free
online platforms where students can fi nd fun ways to learn coding (e.g.
code.org, Scratch, Pencil Code, etc.).

Creating a great program takes much more than learning a
programming language to tell a computer what to do. The greater
challenge is fully understanding what the problem is that one is trying
to solve, and the ways to go about solving it (e.g. knowing how to tell a
computer what to do – coding - only comes after someone knows exactly
the game they want to create).

8

Can we program a machine to be a human being?
Robots designed to look like humans are called humanoids. This has been
a fascination for many people, and robots designed to look like humans
have come a long way in terms of how realistic they are becoming. It
involves a lot of complex programming to recreate human responses,
and expressions. Famous humanoids include Sophia and Ameca. Meet
Ameca, the humanoid robot, and the engineering team that made her
possible on this show produced by Wired: https://youtu.be/6iO6XhbVQfs

Most experts interviewed by Discover Magazine (2017) on this topic agree
that robots are not humans, but also say that with more humanoids being
manufactured, we might have eventually to make special considerations
for them.

• Do Robots Deserve Human Rights? | Discover Magazine

What do students think?

How can computational thinking help me?
Computational thinking is a logical way of reasoning and making
decisions that can help us solve problems every day. It is certainly not
the only approach towards solving problems, but it’s a logical one. All of
us, including adults, benefi t from using this way of thinking when we face
problems.

Computational thinking can help us when we are overwhelmed with
tasks like getting ready for school in the morning on our own. It helps to
fi rst break down the big task into chunks – such as wash-up, get dressed,
have breakfast, make lunch, walk to school - and deal with these smaller
tasks one at a time. It also helps us to disregard any part of the process
that is not crucial to getting us to school (e.g. watering plants before
heading out, or counting the number of grapes to add to our lunchbox).

Do people need to code everything from scratch every time

they want to program something?
Absolutely not. There are free computer programs available on the
internet, that anyone can download, modify, and use. These are known as
open-source software and are contributed by programmers all over the
world, in the spirit of open collaboration (sharing).

For example, if we wanted to make a sonar device scan a room and send
this information to our laptop, we would need a program to instruct our
computer on what to do with the sonar. Instead of coding instructions to
do this from scratch, we can download a ready-made one from a website
such as SourceForge and, with some modifi cations, use it to make our
sonar and laptop work as intended.

Do human beings have codes?
The meaning of code in this context is different from coding instructions
into computers. But yes, humans are born with a program containing
codes from our parents. And no two humans, aside from identical twins,
have identical sets of codes.

Humans, and all other living things, have a unique genetic code in the
form of DNA.

9

The genetic code of a living thing refers to the instructions contained
in cells which tell it how to make all the parts for creating that unique
organism. There are four different types of molecules that make up DNA
(like having only four different) and how these molecules are arranged
(similar to words) determines the types of proteins that can be made.

In 2003, the Human Genome Project successfully identified and mapped
out the complete set of human DNA! By cracking the human genetic code,
we are now able to benefit from better medical treatments.

How much code does it take to make programs run?
Look at this visual that compares the number of lines of codes used in
different software: Million Lines of Code — Information is Beautiful

These figures are, at best, an estimation but it gives us an idea of the
incredible range. Of note is the estimated 2 billion lines of code in the
software that runs Google’s Internet services, i.e. Google Maps, Gmail etc!
That IS massive!

Do animals problem solve?
Animals have not only been observed to be able to solve problems
– many, from sea otters to chimpanzees, have even used tools in the
process.

There are macaques that use rocks to open oysters, octopuses that
store away coconut shells for later use as shelter or armour, and even
orangutans that have fashioned whistles from bundles of leaves to scare
off predators! Even more surprisingly, New Caledonian crows have been

observed MAKING tools by turning twigs into hooks to dig out food!

•	 Crows use hooked tools (cosmosmagazine.com)

•	 10 Animals That Use Tools | Live Science

How can I make a video game?
It’s a good question to ask because surely playing video games is part
of the answer! Not merely playing, but also learning from games to
understand what makes a game successful.

There are many different types of software that now make it easier
for people to create video games. Game engines (e.g. Unreal, Unity,
and GameMaker), are software ‘templates’ that can be used by game
developers to build their worlds on, without having to code from scratch.
There are also online communities of game developers who are happy to
share their experience and artwork.

However, nothing replaces the need to have solid foundation in coding to
be competent in using programming languages, such as Python and C#.

What are software bugs?
Software bugs are errors or flaws in computer programs. Bugs cause the
software program to behave in an unexpected manner (e.g. no response,
or incorrect response). Bugs could be brought about by the programmer
not understanding the problem fully, not having enough time, or not
having enough experience to know what pitfalls to avoid. Debugging is the
process of correcting the errors. One thing is certain – these bugs are not
related to bees or beetles.

10

One of the most famous bugs was the Y2K bug. In the 1900s,
most software developers didn’t think it was necessary to add in
the digits 1 and 9 to represent each year. Because of that, 1998
was simply considered to be 98. But as the world drew closer to
the year 2000, many people feared that systems everywhere
would fail at the stroke of midnight, December 31 1999, because
the computers all over the world would think that the following
day would be Jan 1, 1900. A lot of money was spent to upgrade
systems worldwide to ensure the world did not fall into chaos
because of the bug. It didn’t!

OUTSIDE OR SUPPLEMENTARY READING

Interactive tools and activities using block-based coding
•	 Storytelling overview - CS First

•	 Learn today, build a brighter tomorrow. | Code.org

•	 Pencil Code

•	 Scratch - Imagine, Program, Share (mit.edu)

•	 Blockly Games

Computational thinking
•	 What is computational thinking? - Introduction to computational

thinking - KS3 Computer Science Revision - BBC Bitesize

TOPIC WORDS
•	 Algorithms

•	 Input

•	 Output

•	 Computational thinking

•	 Decisions

•	 Reasoning

•	 Logical

•	 Problem solving

•	 Code

•	 Instructions

•	 Programming

For more teaching
resources, visit
WWW.PRIMARYANDSTEM.ONLINE

Supported by

The Invergowrie Foundation

Swinburne University

